DeepSeek-R1-0528 vs LLaMA 4 Maverick: Which AI Wins in 2025?

DeepSeek-R1-0528 vs LLaMA 4 Maverick: A detailed comparison of reasoning, coding, speed, and pricing to help developers, researchers, and businesses choose the best open-source LLM.


Introduction

The battle for open-weight AI supremacy is heating up, with DeepSeek-R1-0528 (by DeepSeek AI) and LLaMA 4 Maverick (by Meta) emerging as two of the most powerful models in 2025. Both offer cutting-edge reasoning, coding, and long-context capabilities, but they cater to different needs.

This 1,500+ word comparison breaks down:
βœ” Architecture & training innovations
βœ” Benchmark performance (MMLU, LiveCodeBench, AIME 2025)
βœ” Real-world coding & reasoning tests
βœ” Pricing & hardware requirements
βœ” Developer feedback & use cases

Who should read this? AI engineers, startup founders, and researchers deciding between these models for coding, research, or enterprise AI applications.


πŸ“Š Quick Comparison Table: DeepSeek-R1-0528 vs LLaMA 4 Maverick

FeatureDeepSeek-R1-0528LLaMA 4 Maverick
DeveloperDeepSeek AIMeta AI
ArchitectureMixture-of-Experts (MoE)MoE (128 experts)
Total Parameters671B (37B active)400B (17B active)
Context Window128K tokens1M tokens
StrengthsMath & coding (87.5% AIME)Multimodal & long-context
Pricing (Input/Output per M tokens)$0.55/$2.19$0.17/$0.85 (Novita AI)
Best ForSTEM, theorem proving, code debuggingLegal docs, research papers, multimodal tasks

Model Overviews: DeepSeek-R1-0528 vs LLaMA 4 Maverick

1. DeepSeek-R1-0528 – The Reasoning Powerhouse

  • Focus: Specialized in mathematical reasoning, code generation, and logic-heavy tasks.
  • Key Innovations:
    • Two-stage RL training for improved reasoning patterns 5.
    • 92% deeper reasoning (23K tokens per AIME question vs. 12K in previous versions) 10.
    • 87.5% accuracy on AIME 2025, rivaling GPT-4.5 and Gemini 2.5 Pro 6.
  • LicensingMIT License (commercial-friendly) 10.
DeepSeek R1 0528

2. LLaMA 4 Maverick – The Multimodal Long-Context Expert

  • Focus1M token context, native multimodal (text + images), and multilingual support.
  • Key Innovations:
    • Early fusion training (text + images simultaneously) for better coherence 14.
    • 10x larger context than competitors (handles entire codebases or novels) 14.
    • 73.4% on MMMU (multimodal benchmark), outperforming Gemini 2.0 Flash 1.
  • LicensingCustom commercial license (some restrictions apply) 11.
DeepSeek-R1-0528 vs LLaMA 4 Maverick

Benchmark Performance: DeepSeek-R1-0528 vs LLaMA 4 Maverick

1. Mathematical Reasoning (AIME 2025)

ModelAccuracy
DeepSeek-R1-052887.5%
LLaMA 4 Maverick~69.8% (GPQA Diamond)

βœ… DeepSeek dominates in math, while LLaMA 4 is stronger in general knowledge (MMLU-Pro: 80.5%) 11.

2. Coding (LiveCodeBench & SWE Verified)

ModelLiveCodeBench (Pass@1)SWE Verified (Resolved)
DeepSeek-R1-052873.3%57.6%
LLaMA 4 Maverick43.4%Not tested

βœ… DeepSeek is the clear winner for coding, while LLaMA 4 is better for documentation & high-level logic 11.

3. Long-Context Understanding (MTOB & DocVQA)

ModelMTOB (Half Book)DocVQA (Text)
DeepSeek-R1-0528Not testedNo support
LLaMA 4 Maverick54.0%94.4%

βœ… LLaMA 4 crushes long-context tasks, making it ideal for legal/financial analysis 1.


Use Case Breakdown: DeepSeek-R1-0528 vs LLaMA 4 Maverick

1. Coding & Debugging

  • DeepSeek-R1-0528:
    • Best for: Complex algorithm design, theorem proving, and code optimization.
    • Real-world test: Fixed a Next.js cache bug that LLaMA 4 struggled with 11.
  • LLaMA 4 Maverick:
    • Best for: Code documentation and high-level architecture planning.

2. Research & Document Analysis

  • LLaMA 4 Maverick:
    • Processes 10M token documents (entire research papers or legal contracts) 14.
    • Outperforms in DocVQA (94.4%) for extracting insights from PDFs 1.
  • DeepSeek-R1-0528:
    • Better for mathematical proofs and scientific reasoning (GPQA: 81.0%) 5.

3. Multimodal Tasks (Images + Text)

  • Only LLaMA 4 supports images, scoring 73.4% on MMMU (vs. DeepSeek’s text-only limitation) 1.

πŸ’° Pricing & Hardware Requirements

ModelInput Cost (per M tokens)Output Cost (per M tokens)GPU Memory Needed
DeepSeek-R1-0528$0.55$2.19~1.5TB (24Γ— H100)
LLaMA 4 Maverick$0.17 (Novita AI)$0.8518.8TB (240Γ— H100)

βœ… LLaMA 4 is cheaper but requires 10x more GPU memory for ultra-long contexts 11.


πŸ† Final Verdict: Who Should Choose What?

Pick DeepSeek-R1-0528 If You Need:

βœ” Elite mathematical reasoning (AIME 87.5%).
βœ” Superior coding performance (LiveCodeBench 73.3%).
βœ” Cost-efficient inference (lower GPU requirements).

Pick LLaMA 4 Maverick If You Need:

βœ” 1M token context (entire books, legal docs).
βœ” Multimodal support (images + text).
βœ” Multilingual & general knowledge tasks.

In comparesion of DeepSeek-R1-0528 vs LLaMA 4 Maverick, For most developers, DeepSeek-R1-0528 is the better choice for coding & STEM, whileΒ LLaMA 4 Maverick dominates in long-context and multimodal applicationsΒ 311.


❓ FAQ

1. Can DeepSeek-R1-0528 process images?

❌ Noβ€”it’s text-only, while LLaMA 4 supports images & video 1.

2. Which model is faster for real-time chat?

⚑ LLaMA 4 Maverick (145 tokens/sec on Fireworks AI) vs. DeepSeek’s 21.2 tokens/sec 14.

3. Is DeepSeek-R1-0528 open-source?

βœ… Yes (MIT License), while LLaMA 4 has custom commercial terms 1011.


πŸ”— Explore More LLM Comparisons on RankLLMs.com

Also Read: Deepseek-r1-0528 vs Grok 3

Final Thought: The “best” model depends on your use case. For coding & math, DeepSeek-R1-0528 wins. For long docs & images, LLaMA 4 Maverick is unbeatable. Choose wisely! πŸš€


Sources:

Note: All benchmarks & pricing reflect July 2025 data.

Leave a Comment